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Discrete-vortex simulation of a turbulent separation bubble 
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The discrete-vortex model is applied to simulate the separation bubble over a two- 
dimensional blunt flat plate with finite thickness and right-angled corners, which is 
aligned parallel to a uniform approaching stream. This flow situation is chosen because, 
unlike most previous applications of the model, the separation bubble is supposed to 
be strongly affected by a nearby solid surface. The major objective of this paper is 
to examine to what extent the discrete-vortex model is effective for such a flow. A 
simple procedure is employed to represent the effect of viscosity near the solid surface; 
in particular, the no-slip condition on the solid surface. A reduction in the circulation 
of elemental vortices is introduced as a function of their ages in order to represent the 
three-dimensional deformation of vortex filaments, An experiment was also performed 
for comparison purposes. 

The calculation yielded reasonable predictions of the time-mean and r.m.s. values 
of the velocity and the surface-pressure fluctuations, together with correlations 
between their fluctuating components, over most of the separation bubble. The 
interrelation between instantaneous spatial variations of the surface-pressure and 
velocity fluctuations were also obtained. A comparison between the calculated and 
measured results suggests that, in the real flow, the three-dimensional deformation of 
vortex filaments will become more and more dominant as the reattachment point is 
approached. 

1. Introduction 
The discrete-vortex model is emerging as a powerful method for simulating high- 

Reynolds-number flow of unsteady nature in two and three dimensions. An excellent 
review has recently been written by Leonard (1980). Recent applications of the 
discrete-vortex model to unsteady separated flows past two-dimensional bluff bodies 
have suggested that the circulation of elemental vortices should be reduced as a 
function of time in order to  obtain a satisfactory agreement between calculated and 
measured forces acting on the bluff bodies (Sarpkaya & Shoaf 1979; Ashurst 1 9 7 9 ~ ;  
Kiya & Arie 1980; Ashurst, Durst & Tropes 1980; Nagano, Naito & Takata 1981). 
I n  these studies, the circulation reduction is introduced mainly because none of the 
previous methods (see Sarpkaya & Shoaf 1979) can bring about the experimentally 
measured values of the cancellation of shed vorticity in the near wake. Moreover, none 
of the methods account for the observed fact that the strength of rolled-up vortices 
continues to decrease with time or downstream distance. The reduction in circulation 
may be justified as accounting for the three-dimensional deformation of vortex 
filaments which woulcl occur in a real flow of high Reynolds number. 
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The reduction in circulation is inconsistent with an inviscid-flow theorem, which 
requires that the strength of vortices should remain constant in time. However, if a 
separated viscous flow in two dimensions is to be modelled by discrete vortices, then 
the relation Dw/Dt = 0, where w is the vorticity and t is time, has to  be disregarded. 
Strictly, this may seem to be impermissible. We are, however, of the opinion that the 
circulation-reduction procedure should be accepted if it is able to reproduce some 
important features of separated flows to  the extent that  they are of sufficient accuracy 
for engineering purposes and can be estimated on a general rather than a particular 
basis. A compromise between exactness and usefulness should not always be rejected 
because the prediction of various aspects of turbulent separated recirculating flows 
a t  high Reynolds numbers is still uncertain. If some important information can be 
extracted from the resulting model it may enhance our understanding of the separated 
flow and at the same time contribute to the development of prediction methods. 

Apart from several exceptions, most developers and users of the discrete-vortex 
model have concentrated on gross features of flow such as vortex patterns, Strouhal 
number, drag and lift. They fail to show many important flow details such as the time- 
averaged and r.m.s. values of the fluctuating velocity and pressure in the separated 
regions. Since accurate measurements of these quantities in recirculating flows are 
not easy as yet, the value of the discrete-vortex method will be enhanced if it can 
make predictions with fairly good accuracy. Clements ( 1973) calculated the distribu- 
tions of the time-averaged value and amplitude of the velocity fluctuation in the 
potential-flow region near the separation point of a square-based body. The time- 
averaged velocity is found to be in tolerable agreement with experiment, whereas the 
calculated amplitude is less than half the measured one. The mean and fluctuating 
velocities in the separated region are not given. Clements & Maul1 (1976) computed 
the time-averaged velocity distributions in therecirculating region behind a downward- 
facing step to show that the agreement between their calculation and the experiment 
of Tani, Iuchi & Kodoma (1961) is fairly good. The fluctuating velocities, however, 
were not presented a t  all. K i p  & Arie (1980) made a detailed calculation of the time- 
averaged and r.m.s. values of the velocity fluctuations in the near wake of a normal 
flat plate by reducing the circulation of elemental vortices as a function of their ages. 
Their results are in good agreement with the careful measurements of Bradbury ( 1  976). 
Kiya & Arie (1980) argue that, unless the circulation reduction is introduced, the good 
agreement is not obtained. Ashurst ( 1 9 7 9 ~ ~ )  applied the discrete-vortex model to 
compute the separated flow in symmetric channels that  have sudden expansions and 
in the flow behind a single downward-facing step. An approximate vortex ageing is 
introduced, and the plane solid wall downstream of the step is treated by creating new 
vorticity along the wall. The calculated time-mean and turbulent normal and shear 
stresses are unsatisfactorily predicted except for a few locations downstream of the 
step. 

I n  passing, a few successful cases without recirculation will be mentioned. Assuming 
the circumferential velocity field around an elemental vortex to be that of an isolated 
viscous vortex, Ashurst (1979h) simulated the plane turbulent mixing layer to obtain 
excellent agreement between calculated and measured values of r.m.s. velocity 
fluctuations arid the Reynolds shear stress. The axisymmetric turbulent mixing layer 
was successfully modelled by the superposition of vortex-ring elements (Acton 1980), 
which reasonably predicts the time-mean longitudinal velocity profile. Aref & Siggia 
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(1 980) calculated the rolling up of the two-dimensional shear layer by the cloud-in-cell 
method to obtain the r.m.s. velocities and the Reynolds shear stress, which are much 
larger than experimental results. We conjecture that the discrete-vortex model, if 
properly developed further, will be able to reproduce those components of time-mean 
and fluctuating quantities in turbulent flows caused by two-dimensional or axisym- 
metric large-scale vortices. 

Most of the flows mentioned in the last paragraph (except the cases of Clements & 
Maul1 (1975), Ashurst (1979a) and Ashurst et al. (1980)) are those in which the solid 
surfaces of the bodies downstream of the separation point have relatively weak effects 
on the dynamics of the separated region. However, the separation bubbles that remain 
attached to a solid surface are frequently encountered in engineering applications. 
The main purpose of this paper is to examine the extent to which the discrete-vortex 
model is effective in the prediction of the time-mean and fluctuating velocities and 
pressures in a turbulent separation bubble attached to a solid surface. One considers 
the separation bubble formed along a side of a two-dimensional, semi-infinite blunt 
flat plate with finite thickness and right-angled corners which is aligned parallel to a 
uniform approaching stream. This flow configuration is particularly convenient because 
the boundary layer a t  the separation point is so thin that the number of parameters 
required to describe the upstream-flow conditions is expected to be minimal. 

IVithin the framework of the discrete-vortex model, the solid surface is assumed to 
influence the behaviour of the separation bubble through two mechanisms. One is 
the boundary condition that the flow must be along the surface, the other being the 
effect of viscosity which requires that the velocity a t  the surface should be zero. The 
former can easily be satisfied by the introduction of the image vortices, whereas the 
latter can in principle be effected by the creation of vortices a t  the surface to maintain 
the zero-slip condition (Ashurst 1979a; Leonard 1980). Because the number of vortices 
thus created to satisfy the no-slip condition becomes enormous as time advances, 
computer budgets at present will not necessarily allow such extravagance. Several 
methods that have been developed to meet this difficulty are discussed by Leonard 
(1980). A simple alternative procedure to simulate the viscous effect approximately 
will be proposed in $ 2  of the present paper. 

I n  view of the scarcity of the experimental data (Ota & Kon 1974; Ota & Itasaka 
1976; Ota & Narita 1978), measurements were also made of the time-mean and 
fluctuating velocities and pressure in the separation zone. 

In  § 2 the physical model and the fundamental equations will briefly be presented, 
together with the values of a few parameters included in the equations. The experi- 
mental apparatus and procedure are described in 4 3. The calculated and measured 
results are presented and compared in $4, where it will be shown that the present 
discrete-vortex model yields a fairly good prediction of the time-mean and r.m.s. 
values of the velocity and surface-pressure fluctuations and correlations between them 
in the separation bubble. 

2. Discrete-vortex model 
The model considered here is one of the flow past a two-dimensional flat, plate with 

finite thickness and blunt leading edge which is aligned parallel to a uniform approach- 
ing stream. The front surface is normal to  the approaching stream, and t,lius the flow 
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FIGVKE 1 .  ( w )  Physical plane z(  = x + i y )  ; ( b )  transformed plane g( = E + i q ) .  

is assumed to separate a t  the right-angled corners. Since the behaviour of the separated 
shear layer from one corner will be insignificantly affected by that from another corner, 
attention can be concentrated on any one of the two shear layers. Accordingly, the 
geometry of the body can be chosen as shown in figure 1. 

The discrete-vortex model approximates the separated shear layer by an array 
of line vortices. The motion of the shear layer is then represented by the evolution 
of the array of line vortices. The velocity of any vortex is the sum of the velocity of 
the irrotational two-dimensional flow around the body and that induced a t  the vortex 
position by all the other vortices. The two velocity components can be obtained by 
assuming the body to extend to infinity downstream (see figure l ) ,  and then using a 
Schwartz-Christoffel transformation to project the exterior region of the body ( z -  
plane) into an upper half-plane ([-plane) with the boundary of the body along the 
real axis. 

The transformation from the physical x-plane to the transformed {-plane, which 
maps the points z = 0 and i H  ( H  being the half-height of the body) into [ = - 1 and 
+ 1 ,  respectively, is given by 

z = -[([2-1)~-arcosh<]+iH. ( 1 )  
H 
i7 

The complex potential IT, for the irrotational flow around the body is thus 

JK = Ua3(H/77)L (2) 

where Urn is the velocity a t  upstream infinity. If the number of elemental vortices in 
the flow field is n, the complex potential q. of the flow induced by the vortices is givcn 

(3) 

where Cj is the location of the j t h  vortex in the transformed plane, CF its complex 
conjugate, and Fj denotes its circulation. The second term in the curly bracket of 
(3 )  represents image vortices which are necessary in order to maintain the boandary 

by 
n ir. 

j-1 277 Jv, = c ~ { l o g ( [ - < ~ ) - l o ~ ( < - C ~ ) } ,  
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condition of zero flow across the surface of the body. The complex potential Ur for 
the tot,al flow field is the sum of (2) and (3), i.e. It’ = IqL+ Iq.. 

The velocity field in the physical plane is given by 

where ti and v are velocity components in the IC- and y-directions respectively. The 
velocity a t  a vortex point, the Eth vortex, say, has to be obtained by differentiating 
W - i(27r-1 rk log ( z  - z k )  with respect to x ,  and taking the appropriate limit as z -+ zkr 
the result being 

The position of each vortex was advanced during a small time interval 6t by a second- 
orcler scheme 

x k ( t  + St) = zk ( t )  + 4(3(u, + i vJ t  - (u, + 6t. (6)  

One of the most central assumptions of the discrete-vortex model is the choice of 
the circulation and location of the vortices introduced in the flow near the separation 
line. I n  this paper a trchnique similar to  that of Evsns & Bloor (1977)  was employed. 
In  order to satisfy the Kutta condition a t  the edge z ,  ( = iH), there must be a stagna- 
tion point a t  < = 1 in the transformed plane. Thus the strength of the nascent vortices 
is such that 

(dTY/d5)c,, = 0. ( 7 )  

It is assumed that the width of the separated shear layer a t  the edge is E .  The rate a t  
which vorticity is shed downstream from the separation point is then given by 

where I‘n is the strength of the nascent vortex a t  an arbitrary time t ,  St, is the time 
interval between the introduction of the nascent vortices, and zs is the point i(H + E ) .  

The position of the nascent vortex is assumed to be z ,  = i ( H  + * E ) .  The equations ( 7 )  
and (8) thus determine the values of I?, and c at  each calculation step. The solution 
procedure employed a t  this work was as follows. 

(i) An approximate value of E ,  say do), was assumed. The value of e a t  the last step 
may be utilized as do). In  this calculation d o )  = 0.1 H was employed as an initial value 
for all steps. 

(ii) Assuming that the strength of the nascent vortex was, to the zeroth-order 
approximation r$’), equal to that of the last nascent vortex or that  of the one most 
recently obtained, the velocity a t  the point zs = i(W + E )  was calculated from (4). 

(iii) This velocity determined a new strength of the nascent vortex, say I?!:), in 
conjunction with (8). 

(iv) A new value of c, say &), can be obtained from ( 7 )  so that the Kutta condition 
is satisfied. If the condition 

I&) - do)(  < 0.002H, (9) 

was fulfilled, I?:? and dl) were employed as the required values of I’, and E respectively. 
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(v) If (9) was not satisfied, another approximate value of E was obtained from 
d o )  + a(&)- d o ) ) ,  where a! is a parameter introduced to  secure the convergence. In  this 
calculation a = 0.3 was employed. Then one returned to (ii) to repeat the calculation 
until (9) was satisfied. I n  this case, I?$@ of (ii) should be replaced by rp). 

(vi) If the calculation did not converge after thirty iterations, E was set equal to 
0-1H. Moreover, when e became larger than 0 .4H,  or negative, E = 0.4H was employed 
rather arbitrarily. I n  the present calculation, the latter procedure was necessary for 
about 15 yo of the time steps during Umt/H = 20-50, t being the time from the start 
of the flow. 

It should be remarked that the present method, unlike that of Evans & Bloor (1977), 
incorporates the velocity induced by the nascent vortex itself into the determination 
of its strength by (8). 

The circulation of every vortex was reduced according to the law 

where I?, is the initial strength, r(t) is the circulation a t  time t (age of the vortex), a 
is a constant, and Re denotes the Reynolds number U,H/v, Y being the kinematic 
viscosity of fluid. In order to fix the decay law, one need only assign the value of 
the product a2 Re, which was found to be about 60 for a fairly good overall agreement 
between calculation and experiment to be obtained in the present case. An optimum 
value of a 2 R e  will depend on the type of flows to be considered. The decay law (10) 
was employed simply because i t  is the exact solution of the Navier-Stokes equations 
for a single rectilinear viscous vortex if a is replaced by the radial distance measured 
from the centre of the vortex. It may be noted that (10) is a representation of the 
growth of the three-dimensionality in the flow, so that any decay law which works 
should be said to be appropriate. I n  this paper, no attempt was made to compare 
various decay laws (Sarpkaya & Shoaff 1979; Nagano et al. 1981) in order to find the 
most appropriate one, if any. 

The viscosity of fluid requires that the velocity on a stationary solid surface should 
be zero. If the no-slip condition is to  be effected by the creation of vortices a t  the 
surface (see 9 I), the sign of these vortices is opposite to that of the vortices that 
represent the separated shear layer. The introduction of the former vortices will 
change the time-mean velocity profile in the separation bubble, and thus its displace- 
ment thickness, compared with the case where only the latter vortices are present. 
From the equation of continuity, the transverse velocity component us a t  the edge 

where S* is the displacement thickness. Conceptually one assumes that the displace- 
ment thickness S* consists of two contributions, i.e. the velocity defect due to the 
shear-layer vortices (8:) and that due to the no-slip vortices (8;). The former is in 
principle automatically represented by the evolution of the vortices, whereas the 
latter is simulated by an approximate means in this study. To a rough approximation, 
6" is assumed to be the sum of the two contributions, i.e. 

8* = s; +s;. (12) 
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From (1 1) the velocity vg can be written as 

where 

Equation (15) seems to suggest that the effect of the no-slip vortices may be represented 
by adding a transverse velocity vf) to the velocity that exists originally a t  the position 
of every vortex in the vicinity of the edge of the separation bubble. Since an a priori 
estimation of v p )  is difficult, it is assumed to be a constant. Moreover, for the sake of 
simplicity, every vortex in the flow field is endowed with the same velocity without 
regard to its y-co-ordinate. This approximation yields a bodily displacement of the 
shear layer towards the transverse direction. We believe that this is not necessarily 
a bad approximation to the viscous effect. I n  this work v r )  = 0+0125U, was finally 
employed. 

Vortices occasionally approached so close to the side of the blunt body that the 
presence of the image vortices in the body caused them to have unreasonably large 
velocities. To prevent, this occurring, vortices that approached the wall nearer than 
0.02H were removed from the flow field. Monitoring of the computations revealed 
that this process involved, on average, the removal of about 2 yo of all the vortices 
introduced into the flow. 

Since a considerable number of vortices exist in the flow field, it is probable that 
some vortices attain small separation and produce large velocities a t  each other's 
positions because ofthe absence of viscosity. This was avoided by the use of the cut-off 
vortex originally suggested by Chorin (1973)) i.e. 

where $c is the stream function of the vortex, r the circulation, r the distance mea- 
sured from the centre of the vortex, and v denotes the cut-off radius.? Chorin (1973) 
argues that results of calculation based on (16) are not sensitive to the exact choice 
of @, for r < a. The cut-off radius a was chosen to be 0.05H in view of the values of 
similar parameters employed by previous investigators (see Kiya & Arie 1977). 

The time step St for the movement of vortices was taken as 0.16H/Um. Although 
this time step may not be small enough to  represent the real vortex structures imme- 
diately downstream of the separation point, it was sufficiently small to simulate the 
gross flow structure over a major part of the separation bubble. In order to keep the 
computation time within reasonable bounds, the time interval St, between the intro- 
duction of the nascent vortices was taken as 26t (= 0-32H/Um).  Moreover, vortices 
that passed the vertical line x = 25H were simply removed from the computation. 
This assumes that there is negligible transport of vorticity in the negative x-direction 

t Dr D. Maul1 suggests that the effect of viscosity can be best represented by an equation 
like (16) with CT as a function of time and Reynolds number. Such an attempt is made by Nagano 
et al. (1981). 
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FIGURE 2. Change of the position of the reattachment point xx and the surface-pressure coeffi- 
cient - C,, at x / H  = 0.5 as functions of (a)  &Re (@/Urn = 0.0125) and ( b )  u$"/ lJ, (a* Re = 60) ; 
and ( c )  change of B with respect to time for a2Re = 60 arid v!)/U, = 0.0125. Lines for visual aid 
only. 

at x = 25H. Since the calculated time-mean reattachment point existed a t  x N 9.3H, 
this assumption may be justified. 

A large number of preliminary calculations were performed to find the optimum 
values of the various parameters mentioned above. The fluid was assumed to  be set 
in motion impulsively from rest in an otherwise stationary fluid. Figures 2 (a )  and ( b )  
show the location of the reattachment point xR and the surface-pressure coefficient 
(see (17)) a t  x / H  = 0.5 as functions of the decay parameter a2Re and the additional 
normal velocity v$?" respectively. The values of the other parameters were the same 
as those mentioned previously. Since the integration to obtain the time-mean values 
was made over a comparatively short time interval (83 N 93) H / V ,  after the start of 
flow, they are a little different from the corresponding values for much longer time of 
integration, which will be shown in 5 4. The results compiled in figures 2 (a ,  b ) ,  however, 
can indicate the general trends of change of the above two quantities with the para- 
meters a2 Re and $'). It is interesting t o  note that the surface-pressure coefficient in 
the vicinity of the separation point is almost independent of up), althoughthis velocity 
has a significant effect on the separation-bubble length. Figure 2 (c) shows the change 
of e with respect to  time in an early stage of the development of flow. Very little 
change of B was observed once the flow became statistically stationary, its value being 
almost equal to  0.1H. In this sense, a fixed distance 6 (e.g. Clements 1973) is supposed 
to give reasonable results if the values of B and other parameters are chosen appro- 
priately. The important thing is that  the number of disposable parameters can be 
reduced by employing the present procedure. This gives us a great advantage when 
the discrete-vortex model is to be applied to  oscillating bodies. 

It may be worthwhile to  make a comment on the role of the disposable parameters. 
Since the discrete-vortex model is essentially an inviscid model, some empiricism has 
to be introduced to simulate the actual separation bubbles which are viscous and 
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dissipative in nakure. Primary parameters in the present model are the decay parameter 
a2 Re and the additional transverse velocity up), other parameters influencing the 
results insignificantly. These two parameters have been determined so that, the time- 
mean surface pressure immediately downstream of the separation point and t,he 
time-mean reattachment point agree with the result of Ota & Itasaka’s (1976) experi- 
ment. Our philosophy is that, if we can obtain much more information than the input 
from the model, its existence can be justified. One may recall here the free-streamline 
theory or the wake model for bluff bodies in which the base pressure and the boundary- 
layer separation point have to  be given experimentally in order to  obtain the surface- 
pressure distribution and streamline patterns outside the wake region. 

Final computation was performed from U,t/H = 0-300, which corresponds to 1875 
time steps. The fluid was assumed to be set in motion impulsively from rest. The 
resulting location, circulation and velocity of all the vortices in the flow field a t  each 
time step were recorded on magnetic disk memory for later use. The vortex patterns 
and the waveforms of the fluctuating velocity and pressure a t  a few typical positions 
seemed to be statistically stationary in the range U,t/H 2 80, so that various averag- 
ing of the fluctuating quantities were obtained by integration from U, t / H  = 88 to 288. 

On the assumption that all streamlines come from upstream infinity, the pressure 
p was calculated from the Bernoulli equation 

where C, is the pressure coefficient, p ,  the pressure of the free stream, p the density 
of fluid and q5 implies the velocity potential. The unsteady term &$/at was evaluated 
from 

a @ p t  = 9 (aw/at) 

In (18) a term proportional to ar,/at was omitted because (17)  is originally obtained 
for potential flows of inviscid fluids in which the circulation of vortices remains un- 
changed (Kelvin’s law of the conservation of vorticity). We are of the opinion that the 
omission of this term is necessary if (17 )  is to be utilized to calculate the pressure. 
Moreover, even if the decay law (10) is fairly good, it may not necessarily be a good 
approximation to an actual time derivative of the strength of vortices. At present one 
has little information about how the exact functional form of the time derivative 
should be. The appropriateness of the pressure thus obtained has to be determined by 
comparison with experiments. Finally, if a position a t  which the pressure was to be 
calculated was nearer to a vortex than the cut-off radius, the term proportional to 
the time derivative of its position was removed from ( 1  8). This seems to be reasonable 
because elemental vortices introduced in this paper are different from potential line 
vortices within the cut-off radius and thus the term concerned is no longer meaningful. 
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FIGURE 3. (a)  Distribution of elemental vortices at  the time U , t / H  = 281.1 from the start of 
flow, when the flow is statistically stationary; (b)  trajectories of vortices during U,t/H = 280.6- 
281.6 with respect to a co-ordinate fixed to the plate; and (c) trajectories of vortices during 
U,t/H = 280.3-281.9 with respect to a co-ordinate moving with the velocity 0*5U, in the 
downstream direction. Note that several large vortex clouds are evident in (c). 

3. Experiment 
Experiments were carried out in an open-return, low-speed air tunnel with a working 

section 40 cm high, 20 cm wide and about 1 m long. The tunnel allows speeds up to 
24.0 m/s to be obtained through the empty working section. The free-stream turbu- 
lence level was 0.3 % a t  the speed of 20.0 m/s. 

The blunt flat plate tested, which was nanufactured from acrylic resin plates, was 
20 mm thick ( H  = 10 mm), 50.1 cm long and 20 cm wide, and its leading edge was 
right-angled. The plate spanned the air tunnel horizontally along its centre line, thus 
having an aspect ratio of 10. The leading edge of the plate was situated at a distance 
50 cm downstream of the beginning of the working section. No end plates were used. 
An exact alignment of the plate was found by matching pressures recorded on tappings 
located a t  the upper and lower surfaces of the plate 5.5 ,  11.0 and 27.0 cm from the 
leading edge. Anumber of pressure taps of 0.7 mm diameter were fitted along the lower 
side of the plate a t  the mid-span, the distance between consecutive taps being mostly 
5 mm, in order to  measuxe the time-averaged surface-pressure distribution. 

The tunnel-wall blockage ratio originally amounted to 5 yo, so that it was felt safe 
to reduce the blockage effect. For this purpose the co-ordinates of a few blockage-free 
streamlines in the vicinity of the test-section walls were computed by a wake-source 
model in conjunction with a shape of the separation bubble and the distribution of 
the displacement thickness along a blunt flat plate measured by Ota & Itasaka (1976). 
False boundaries of acrylic resin sheet were then introduced along the ceiling and 
floor of the test section; they were curved according to  the blockage-free streamline, 
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VIU- 
( b )  

FIGURE 4. Profiles of (a)  longitudinal and (6) normal components of the time-mean velocity 
in the separation bubble. 0, calculation with a / H  = 0.05; 0 ,  present experiment; A, experi- 
ment by Ota & Kon (1974); - - -, experiment by Ota & Itasaka (1976).  

flared by an amount equal to the displacement thickness of the boundary layer along 
the tunnel walls, and smoothly joined to the bell entrance of the test section. 

The time-averaged and fluctuating velocities in the separation bubble were measured 
by a constant-temperature hot-wire anemometer using a single-wire technique. The 
static pressure distribution in the flow was obtained by a static tube of 1.0mm 
diameter with the aid of a Retz manometer. These probes were mounted separately 
on a traversing mechanism outside the tunnel. This allowed the position of the probes 
to be adjusted within an accuracy of 0.1 mm. 

Pressure fluctuations on the surface of the plate were detected by a semiconductor 
strain-gauged transducer which was mounted inside the plate with a small cavity 
between a pressure tap of 0.7 mm diameter and the diaphragm of the transducer. 
This pressure transducer was calibrated against a standard condenser microphone by 
means of sound waves of various frequencies generated by a loud-speaker. The gain 
factor was found to be 1 f_ 0.1 up to 450 Hz, with negligibly small phase shift. 
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The root-mean-square value of the pressure fluctuation was obtained by a true 
r.m.s. meter. The longitudinal velocity and surface-pressure fluctuations were recorded 
simultaneously on two channels of an analogue tape recorder (KYOWA R-520A) and 
were later analysed on a digital signal processor (SANE1 71‘074) to give their auto- and 
cross-correlations. A careful calibration showed that no sensible phase lag existed 
between the outputs of the hot-wire probe and the pressure transducer. 

Finally, the flow pattern on the plate surface was visualized with the aid of titanium 
oxide suspended in a mixture of light oil, liquid paraffin and silicone oil. 

4. Results and discussion 
4.1. CalculatedJlow patterns 

In  order to show general appearance of the separation bubble simulated by the 
present discrete-vortex model, figure 3 presents the vortex patterns a t  certain time 
steps a t  which the simulated flow in the separation bubble was in the statistically 
stationary state of fluctuation. Figure 3 ( a )  is the location of the elemental vortices. 
Figures 3(b) and (c) are the trajectories of the vortices during a short time interval 
1.60H/Um with reference respectively to  a co-ordinate fixed to the plate and to  one 
moving in the downstream direction with a velocity 0*5U, relative to the plate. 
Figure 3 ( c )  shows clearly that several vortex clouds are formed in the separated 
shear layer and coalesce to form larger and larger vortex clouds which are subsequently 
swept downstream. Although not exactly periodic, this process occurred from time to 
t,ime. It may be noted that no artificial device is employed in the present calculation 
to initiate fluctuations in the flow field. 

4.2. Time-mean velocities and pressure 

The computed distributions of the time-mean velocities U and V are compared with 
the measured ones in figure 4. Here V and U denote the velocity components in the 
x- and y-directions respectively. Since the interpretation of hot-wire signals in highly 
turbulent regions with low time-mean velocity is generally difficult, the data are not 
shown within a dividing streamline of the separation bubble. The agreement between 
the calculation and the present experiment is seen to be reasonable only in the region 
well above the dividing streamline. Moreover, the distribution of U in the vicinity of 
the stagnation point, which is located a t  x / H  = 9.3 in this calculation, is poorly 
predicted. The measurement of Ota & Itasaka (1976)  is generally in poor agreement 
with the above results. Their longitudinal velocity a t  the outer edge of the shear layer 
seems to be too low to give the level of the observed negative surface pressure imme- 
diately downstream of the separation point. Moreover, the time-mean streamline 
pattern (figure 5 of their paper) is inconsistent with the velocity profile a t  a certain 
section, so that their velocity distribution should be taken with reserve. 

The time-mean output of a single hot wire aligned normal to the plane of the flow 
(the (x, y)-plane) measures the time-mean value Q of the quantity p, where 

q = [(u+u1)2+(V+v’)2]*; (20) 

ur and v’ are the fluctuating velocity components in the x- and y-directions. It may 
be noted that the effects of heat losses due to the natural convection and the velocity 
component along the wire axis have been disregarded in (20). Since Q can be measured 
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FIGURE 6. Profile of the time-mean pressure coefficient C,in the separation bubble. 0, calculation 
with u / H  = 0.05; a, prescnt experiment; - - -, experiment by Ota & Itasaka (1976). 

much more accurately than U or V ,  its distribution in the separation bubble could be 
compared with the calculated one in order to examine the extent of accuracy of the 
present discrete-vortex model. The result is shown in figure 5. The agreement between 
the calculation and experiment seems to be fairly good except for the region of very 
low values of Q .  

The distribution of the t,ime-mean static pressure P in the flow field is presented in 
figure 6 in the form of the pressure coefficient C,( = (P-pm)/ , tp  U L ) .  For later con- 
venience, the fluctuating pressure component is denoted by p'. The discrete-vortex 
model reproduces the experimental results fairly well except for the section x / H  = 0, 
where the static-pressure measurement may be prone to large errors near the edge 
because of large flow curvature. Figure 7 shows the pressure distribution along the 
plate surface. The prediction is again fairly reasonable. 
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4.3. Reverse-$ow intermittency and rea t tac~~me~t  point 

The point where the separated shear Iayer reattaches on the plate surface moves 
intermibtently back and forth owing to the formation and subsequent downstream 
shedding of large-scale vortices in the separation bubble. The time-mean reattachment 
point should thus be defined as a point where the fraction of time I, during which the 
flow moves upstream near the plate surface takes the value of 0.5. This reverse-flow 
intermittency I, can be easily obtained in the discrete-vortex model, whereas the 
directional insensitivity of n hot-wire probe prohibits I, from being obtained experi- 
mentally, so that direct comparison between calculation and experiment is not 
possible. 
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FIGURE 9. Surface-flow pattern. 

Figure 8 shows the calculated distribution of I, on the plate surface together with 
the calculated time-mean surface velocity U,. The points where I, = 0.5 and U, = 0 
are seen to  be exactly coincident and located a t  x / H  = 9.3. 

A few interesting features of the Ir w x / H  curve should be mentioned. Firstly, the 
reverse-flow intermittency is always less than unity in the time-mean separation 
bubble. This is also the case, even a t  the point where the time-mean reverse velocity 
on the plate surface attains a maximum. Secondly, with decreasing x / H ,  I, falls 
rapidly to zero in the region x / H  2 2.0, where the surface velocity becomes positive, 
although its absolute value is extremely low. This fact strongly suggests that  a secon- 
dary separation bubble is formed in this region. The surface flow pattern shown 
in figure 9 is not necessarily inconsistent wit,h the existence of the secondary bubble, 
because it indicates that  the longitudinal velocity in the vicinity of the plat,e surface 
is very low in the region x / H  5 2.0 and that an accumulation of displaced oil occurs 
over a short distance downstream of x / H  2: 2.0. 

4.4. Velocity and pressure jiuctuations 

The r.m.s. values of the fluctuating velocity components are shown in figures 10 and 
11 as functions of the normal distance from the plate a t  several downstream sections. 
The results of Ota & Narita (1978) and the present experiment are also included for 
the purpose of comparison. Ota & Narita’s data on the r.m.s. velocities show that their 
maxima appear a t  positions more remote from the plate than the case of the present 
experiment. This corresponds to a higher location of the separated shear layer in their 
experiment, as will be seen in the time-mean longitudinal velocity profile (see figure 
4u). The distributions of the r.m.s. velocities are observed to be tolerably well pre- 
dicted, except for the region near the reattachment point. 

In order to demonstrate the effect of the cut-off radius on the fluctuating quantities, 
figures 10 and I1 include the calculated results for a / H  = 0.075, all the other para- 
meters being maintained to be the same. The r.m.s. velocities for r / H  = 0-075 are 
only slightly less than those for g / H  = 0.05, except for the region in the vicinity of 
the separation point, where the reduction is a little larger. This may imply that the 
r.m.s. velocities a little downstream of the separation point are governed mainly by 
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individual vortices passing near a point where they are calculated, whereas a t  positions 
further downstream the r.m.s. velocities are determined by the velocity fluctuations 
associated with large vortex clouds. 

As suggested previously, the fluctuating component of a hot-wire output (normal to 
the plane of mean flow) in highly turbulent regions can approximately be interpreted 
as the fluctuating component q' of the quantity q. Then the computed distribution 
of ( p ) 6 / U m  is compared with the measured one in figure 12. They are seen to be in 
tolerable - agreement. It may be worth noting that (p)* is only a little different from 
( u ' ~ ) $  in the discrete-vortex calculation, although their time-mean counterparts Q and 
U are rather different from each other in the separation bubble. 

The Reynolds shear stress is plotted in figure 13 in a dimensionless form - =/ U z .  
I n  this case the discrete-vortex prediction is rather discouraging because the com- 



236 M .  Kiya, K .  Susaki and M .  Arie 

I I I I 

0 x I H =  2 ' 4  L----T.7--l~ . I 0  

4 -  - 

0 5 0 
a 0 

a Q a b 0 
3 -  0' 

0 

0 0 .  
0 z. i s  

70 
.O a 

.O 8, t - 
0 .  0 .  

.O 
"0 

. z 8 :  % .O 

$ 2 -  2 . O  

3 i  

1 -  ; 

.O . O  . O  :00 
? 

0 .  
0 .  

- 0  
. O  

0 0 .  

. o  . O  
.O 

. O  

0 .  
d ) .  

% ' .  
0 m .  . A 0  

M .  
a.4 0 

' .  O a  

p I  
. A O d 0  -. - 9 0  .. 

A %., 10 . 
0. *. A 0  yoo 10 a'% . . 

%A 
0 . 4  

0 0  . 
r D .  

0 "$, t 
0 /. O A"." A% : 8P: 

8" I 0 I .  , ~ ~ :  , ~ 

0 .  a 

6. 0 

.to. ' 
m .  

m a  
*,.%" : A 0. 

0. a m  

10. ( Q  .'A B 1. 9 00: 0 .  

4 

3 

s: 
$ 2  I 

3 

1 

0 

b 0 4 P 0. 
0 0 

0 0 0.01 0.02 0 0 0 0 0.01 ' - 
-u 'v ' iu2 ,  

FIGURE 13. Distribution of Reynolds shear stress in the separation bubble. 0, calculation 
with u / H  = 0.05; A, calculation with a / H  = 0.075; 0 ,  present experiment. 

puted shear stress decreases rapidly near the reattachment point to a much lower 
level than the measured one. Moreover, the latter exhibits no sensible decrease there. 
A fairly good agreement between the calculated and measured profiles is observed 
only in the middle of the separation bubble. The same tendency of the Reynolds shear 
stress is also observed in a more elaborate discrete-vortex simulation of the flow 
downstream of a two-dimensional downward-facing step (Ashurst 1979a). 

I n  our opinion, this feature of the computation is associated with the two-dimen- 
sional nature of the present discrete-vortex model. I n  the real flow, one may imagine 
that after separation a straight vortex parallel to the spanwise direction is formed. 
This straight vortex will not be stable to  certain spanwise disturbances. If such a 
disturbance slightly deforms the vortex, the combination of the self-induction effect 
and non-uniform velocity distribution further deforms the vortex further downstream 
in such a way that i t  consists of a U-loop (see Hinze 1975, figure 6-31). One thus 
expects that  streamwise components of the vortex develop, so that further down- 
stream eddies with axes inclined in the x-direction occur, forming pairs with opposite 
signs of vorticity. These eddies will produce the fluctuating velocity components u' 
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and v', which are correlated very differentIy from those associated with the two- 
dimensional vortex clouds in the calculation. Figure 13 suggests that, in the real flow, 
the correlation may be contributed mainly by the deformed vortices near the 
reattachment zone. We imagine that the three-dimensional deformation of vortices 
may be significant there owing to certain intrinsic mechanisms and will probably 
lead to the eventual breakdown of vortices (see Clark & Kit 1980). I n  passing it may 
be noted that a fairly good agreement between the calculated and measured r.m.s. 
values of ZL' and v' does not generally guarantee a satisfactory result for the correlation 
u" between them. 
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FIGURE 16(a, b). For caption see facing page. 

The calculated and measured distributions of the r.m.s. values of the surface- 
pressure fluctuation &. are compared in figure 14. I n  both cases, a maximum r.m.s. 
pressure appeared at a position a little upstream of the time-mean reattachment 
point, which was x / H  = 9.3 and 9.5 for the calculation and the observation respec- 
tively. This feature is also observed by Wedding et al. (1978) on a separation- 
reattachment side of a square prism. The calculated maximum value was 20% 
larger than the measured one. 

The power spectrum of the surface-pressure fluctuations was obtained in the re- 
attachment zone. The result a t  x / H  = 10 is given in figure 15 in the form of E,+(f) 



Discrete-vortex simulation of separation bubble 239 

Y-H 
H 

-1.0 -0.5 0 0.5 1 .o 
R u'p; 9 Rq'p; 

FIGURE 16. Distribution of the correlation coefficients between the surface-pressure and velocity 
fluctuations. 0, 0 ,  R,,a,; a, R,,,,; open symbols for the calculation with a / H  = 0.05 and 
filled circles for the experiment. (a)  x / H  = 2;  (b )  6; (c) 10. 

versus fH/U,, where f is the frequency and ED!. denotes the one-sided spectrum 
defined by 

- w  

The calculated and measured spectra are seen to be in reasonable agreement, except 
in the range of low frequencies. This result, however, may be considered as fortuitous 
because the calculated r.m.s. surface pressure a t  x / H  = 10.0 is not in excellent agree- 
ment with the experiment (see figure 14). 

4.5. Correlation between surface-pressure and velocity fluctuations 

In order to examine further the potentialities of the discrete-vortex model, correla- 
tions between the fluctuating surface pressure and the fluctuating velocities were 
calculated. The correlation a has often been measured in wall-turbulence experi- 
ments because it is indicative of some features of large-scale vortex structures in such 
flows. Since the hot-wire measurement of u' and v' is difficult in highly turbulent 
regions, such as are found in the separation zone, the correlation qpI,  was calculated 
and compared with the experimental result. As mentioned previously, q' will be 
measured more accurately than u'. Figure 16 shows the distribution of 

and 

as functions of the normal distance from the plate surface. A major difference between 
RUrp; and Rqfp; appears in the reverse-flow region, beyond which they are almost 
identical except at the station x / H  = 2.0. 

The calculated and measured results of RP.,,;, will be discussed in comparison. 
Apart from a t  the station x / H  = 2.0, the general shape of the correlation curves was 

__ 

- -- '2-74 Rz4'pa [ = uGG/(u P w  1 1 RQ,P.W [ = 4'P6/(q'2 P 3 1  
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FIGURE 17 (a, b ) .  For caption see facing page. 

qualitatively similar, although there existed considerable quantitative differences 
between them, especially a t  the station furthest downstream of x / H  = 10. That much 
smaller values of Rg!p;v were obtained nearer the plate surface in the experiment than 
in the calculation is explained by the no-slip condition a t  the surface; in the calculation, 
the fluctuating longitudinal velocity is non-zero there. A fairly good result for the 
station x / H  = 6 suggests that  the real-flow structure is well simulated in this region 
by the present discrete-vortex model. In  other words, the two-dimensional large-scale 
vortex structures are mainly responsible for the fluctuating flow properties there. 
At the station further downstream a t  x / H  = 10 the aforementioned three-dimensional 
deformation of vortices influences the correlation Rq,+ so that the calculation yields 
less satisfactory results. 

I n  the present experiment it was suspected that the shear layer a little downstream 
of the separation point exhibits an oscillating motion in the vertical direction with 
indefinite frequencies lower than roughly 50 Hz. The vertical motion is not evident 
in the calculation. I n  order to remove the effect of these fluctuations associated with 
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FIGURE 17.  Instantaneous spatial distribut,ion of the fluctuating components of surface-pressure 
and velocity vector. Trajectories of elementalvortices are shown during a time interval 0.7H/ U, 
from the instant indicated. Note that only the direction of the fluctuating velocity vector is 
presented. ( n )  U,t /H = 88.8; ( b )  90.7; (c) 92.6; (d)  94.6. 

the said motion of the shear layer, the output of the hot wire and the pressure trans- 
ducer were passed through a high-pass filter (50 Hz) before being fed to the signal 
processor. The resulting correlation profile is included in figure 16 (a)  to show that the 
agreement between the calculation and experiment is reasonable. 

One now considers the correlation Ru,p; in conjunction with the vortex patterns in 
t8he separation zone. Figures 16(b, c) indicate that this correlation is positive in the 
vicinity of the plate, and becomes negative when the distance g / H  from the plate is 
larger than a certain value around 1.0. The vortex patterns in the separation bubble 
at several successive times are presented in figure 17, together with the instantaneous 
spatial variation of the fluctuating components of the surface pressure and the velocity 
vector. It may be noted that the arrows in these figures show only the direction of the 
velocity vectors and not their magnitude. In order to demonstrate the large-scale 
vortex patterns, figure 17 also includes the trajectories of elemental vortices during a 
short time interval @7H/U,  with reference to a stationary co-ordinate. Although the 
vortex clouds are not very clear, their existence can be ascertained without much 
difficulty. 
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FIGURE 18. Distribution of integral time scale of the surface-pressure fluctuations. 0, calculation 
w ~ t h  n / H  = 0.05; -0-, experimental result for overall frequencies; - - - -, experimental 
result for high-pass-filtered signal (50 Hz) .  

The fluctuating surface pressure is negative beneath the large-scale vortex clouds, 
whereas i t  is positive in regions where they are absent. As can be seen by looking 
progressively downwards in figure 17, the surface-pressure waveforms move in the 
downstream direction, approximately maintaining their general shapes. The corres- 
ponding peaks and valleys of the waveforms can be easily identified at  each time. 
This demonstrates clearly that the spatial variation of the surface-pressure fluctuation 
is indicative of the large-scale structure in the flow. The fluctuating velocity component 
u' is generally negative in the lower part of any particular vortex cloud and positive 
in the upper part of it. On the contrary, in regions where the vortex clouds are absent, 
u' is positive in the vicinity of the plate and becomes negative beyond a certain 
distance from the plate. The aforementioned features of the fluctuating surface 
pressure and velocity are sufficient to explain the general shape of the correlation 
profiles Rufppd, N y / H  shown in figure 16. 

After the present work was completed, a paper by Komatsu & Kobayashi ( 1  980) 
came to our attention. They present the instantaneous pressure distribution along the 
sides of a transversely oscillating rectangular cylinder, the width being 3.0 times the 
height, together with the vortex pattern above the sides. Their results clearly demon- 
strate that  the predicted relation between the instantaneous pressure distribution 
and the vortex pattern (figure 17) is correct. 

Finally, the integral time scale 7 p  of the surface-pressure fluctuation was evaluated 
from the autocorrelation coefficient &(x, t ) p k ( x ,  t +7)/pz(x), and plotted in figure 18 
as a function of the longitudinal distance x / H .  The experiment shows a steep increase 
of 7 p  with decreasing x / H  when x / H  < 4.0, whereas in the region x / H  > 4.0 the time 
scale is weakly dependent on the longitudinal distance. The large rr, for x / H  < 4.0 is 
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considered to be attributable to the vertical oscillation of the shear layer mentioned 
previously. The pressure signals passed through the high-pass filter (50 Hz) were 
subsequently processed to yield an approximately linear increase of rp with increasing 
x / H  in the region x / H  < 4-0. The resulting experimental variation of the time scale 
with x / H  is qualitatively in fair agreement with the calculated result as shown in 
figure 18. 

5. Concluding remarks 
The discrete-vortex model has been utilized with some success to simulate the 

separation zone over a two-dimensional blunt flat plate with finite thickness and 
right-angled corners, which is aligned parallel to a uniform approaching stream. 
This flow situation is discriminated from other two-dimensional separated flows past 
bluff obstacles hitherto widely treated by this model in that no periodic vortex shed- 
dings occur and, more importantly, the separated shear layer is strongly affected by 
the nearby solid surfaces. 

A simple but effective procedure is employed to represent the effect of viscosity, 
which imposes the no-slip condition on the plate surface. A reduction in the circulation 
of elemental vortices is introduced as a function of their ages in order to represent 
partly the viscous and/or turbulent, dissipation of vorticity, and partly the three- 
dimensional deformation of the vortex filaments, which leads to a decrease in the 
vorticity component normal to the plane of Aow. Although the circulation reduction 
is inconsistent with the requirement that the angular momentum be conserved in 
inviscid flows, this can hardly be avoided to simulate adequately the overall structure 
of essentially dissipative flows. From the practical point of view, we feel that  the 
circulation reduction is permissible if the resulting model can reveal some fundamental 
features of flow in the separation zone, which cannot easily be obtained by experi- 
mental means. 

The present calculation yields a tolerable prediction of the time-mean and r.m.s. 
values of the velocity and surface-pressure fluctuations, together with the correlations 
between their fluctuating components, in the major part of the separation bubble. 
The interrelation between instantaneous large-scale vortex structures and instan- 
taneous spatial variations of the surface-pressure and velocity fluctuations are also 
presented. A comparison between the calculated and measured Reynolds shear stress, 
however, indicates that in the real flow the three-dimensional deformation of vortex 
filaments becomes significant in the reattachment zone, so that the Reynolds shear 
stress cannot be well predicted there. Accordingly, in order to be more realistic, the 
discrete-vortex method should be extended to include the three-dimensional defor- 
mation of the vortex filaments. Finally, it should be remarked that no other analytical 
or numerical model has yet been able to produce equally satisfactory results for the 
separation-bubble flow at high Reynolds numbers. 
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